
Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement
by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology.
Any permissions have been obtained and that proper credit of third party material has been cited.
The views and opinions of contributors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

© 2023 California Institute of Technology

Taming Monsters with Dragons

Robert Karban and Myra Lattimore
Jet Propulsion Laboratory, California Institute of Technology

Towards a Model-Based Product Development Process from Early
Concepts to Engineering Implementation

https://opencae.jpl.nasa.gov/portal/#/

JPL Systems Engineering Workshop

Project teams are large. Lots of people work on one project...

...and they communicate their project needs often through
spreadsheets.

To eventually do this...

And this. But it takes a lot to get here.

So how do we get from this... to this?

How can the systems environment help to bridge this gap?

It takes people, and requirements, and spreadsheets, and documents,
and processes, and workflows, and tests...

Unfortunately, all of these things create silos of information that lead to
miscommunication and duplicate work.

A project starts simple.

Engineers iterate on their models.

They add it to a spreadsheet to track it over time.

They add it to a document.

And get input from others.

And it gets complicated pretty quickly...

Bad Ratio of Real engineering vs. overhead

Repetitive Data Entry Version Confusion Constant Searching

How do we connect all of these things together?

Dragons beating Monsters
Systems engineering the development process

Monsters occur and reproduce

● Ever growing complexity of spacecrafts
○ More functions
○ More hardware
○ More software

● Observation that silos (the Monsters) occur, for example:

Flight Software Ground Data System Remote Engineering Unit

Monsters have Implicit connections

● Hard to understand relationships between silos, e.g. how to check
requirements against test

● Difficulty when something changes and perform impact analysis
across the board

● Monsters can be resolved by using models to capture
relationships - turns monster into a solution

Flight Software Ground Data System Remote Engineering Unit

Monsters live in a discontinuous space

● Overhead to connect everything manually limits breaking up the
silos

● Disconnected areas, implicit (e.g. in Excel).
● Qualification process does not work systematically

Digital twin pipelines evolve with system development

Lifecycle axis - how twins connect up
Progression of pipelines to complete the qualification
of the system for flight, e.g. MBSE with Model
checking & Simulation
Each of fractal branches is a digital twin product

Digital twin - progression of detail, fidelity and clarity of what we build
- the product, and produce companion products of system, e.g. model
of system under control
Progress towards implementation until we have high enough fidelity
so we can build the system - software defined systems

Qualification - property of twin,
Connect twins only when qualified

Digital twins
System
development
iterations

Correspondence

Follow an evolutionary pattern to keep things connected

● Expand pipelines evolving them as a digital twin
● Manage Change packages
● Fractal approach: Each qualification step remains valid over time

or elaborated, e.g. scenarios in simulation are still valid for SW
testing later on; levels of requirements

● Spiral build of system representation

Make process of systematically connecting
information a commodity

● Project spiral of system development into fractal pipelines with

increasing detail and fidelity

● Have a degree of qualification comprehensiveness for each twin

(increment in the spiral)

● Each pipeline builds on top of the other - progress in terms of fidelity

Dragon: Formal Qualification of Systems Modeling and Software

● Repeatable, executable representation of the system and its
relationships at different levels of fidelity

● Explicit qualification record
● Relationship between representation - the progression
● Systematic process for developing the system

JPL/Caltech Proprietary Business Discreet. Caltech Record. Not for Public Distribution.

Technical Peer
Review

Change Package - Configuration
Management Traceability

Model Checking
Results

Autocoder
Code

Repository

Test Code

Source Code

Executable
System Model

Scenarios

Behavior
Elements

Design
Document

IncQuery

Syndeia

JAMA/DNG Wiki/Alfresco Teamwork
Cloud/MMS GitHub Jenkins Collaborator Artifactory

Formal
Change
Package

Artifact
Repository

Requirements
Unit System &

Integration Test
Results

Software Build
Artifact

Static Analysis
Results

Software
Documentation

TestRail

Build, Test, and
Coverage
Execution

Static Code
Analyzer

Process: Issue Management • Continuous Integration • Process Orchestration
JIRA Jenkins XLReleaseDevOps - Continuous Integration - Simulation

Code Coverage
Results

Model
Checker

Requirements
Documents

FDIDs

System Test

Document
Generator

Example of Dragon
Europa Clipper REU Use Case as a starting point

Europa Clipper Remote Engineering Unit (REU)

• Manage and develop test suites and cases
• Trace requirements to test suites
• Analyze and report traceability matrices
• Explicitly traced and querible artifacts
 - Requirements
 - Test cases
 - Log cases
 - Test results
 - Generated reports

Capabilities:
Test Management

Requirements Traceability

The Nexus product is a collaborative platform for Systems Engineers to automatically generate documents and integrate data from
other repositories in a coherent fashion

Nexus/OpenMBEE ViewEditor

● Connects data to web-based
engineering documents on
Confluence Wiki

● Manages updates and changes to
connected information

● Supports the document collaboration,
review, and export process

● Provides document and requirement
visualization

● Maintains the single, authoritative
source in a collaborative environment

● Insert rich hover references to either DNG
requirements or other Content.

● Live tables for Requirements and
Dictionary data

● Configuration Managed Data updates

Nexus helps authoring Model Based engineering documents

Demo: FDIDs as linked documents

http://www.youtube.com/watch?v=ZlZaKTqH5YY

Pipeline Prototypes

Model Execution, Code Generation and Test

● FSW models revised to incorporate
executable simulation

● Requirements drive scenario tests
in the form of sequence diagrams

● Syndeia traces requirements and
Testrail to systems model and
scenario tests

● Traverse the model (state machine
and sequence diagrams).

● Generate source code & test
sequences.

Code Generation with OpenMBEE COMODO

Test code

App code

Document Generation

● Detect reference to
requirement in source
code files

● Create or update a
Syndeia relation between
the requirement and the
source code file in GitHub

● Display the endpoints of
this relation in the
documentation with links
to the requirement and
the source code file in
GitHub where it is
referenced

Document Generation

Auto-include links into code

Generated linked documentation

Model Based Product Development

Model Based Product Development Pipeline

● Cover product lifecycle from early concept
development to implementation

● Bring (executable) systems/physics based
modeling earlier into the design

● Evolve fidelity of simulation as architecture
matures

● Common, flexible, integrated, collaborative
engineering platform

● Track parameters across product lifecycle

● Consistent set of models to keep trade
space open longer before committing to
hardware

● Develop and validate the architecture before
buying parts

● Allow for transition into detailed low level
discipline specific simulation capabilities

● Determine implementation risk

Collaboration &
Capture
Set up

Architecture
topology

Deconfliction

Discovery

(Generative) Architecture
exploration

Design &
Constraint Capture

Behavioral
Specifications

Variants &
Configurations

Multi-attribute comparison
& constraint evaluation

System level & multi-physics
Co-simulation

Visualizations
(e.g. telemetry)

Products

Documents

Architecture &
Design

(Quantitative)
Analysis Publication

Issue Management Continuous Integration Process Orchestration

Process (Traceable, Auditable, Repeatable)

Behavioral Analysis

Workflow across product lifecycle

Functional &
physical trade

Iterative

Traceability

Parameter
tracking

Metrics
Reporting

VnV

Audit trails

https://opencae.jpl.nasa.gov/portal/#/

Collaboration & Capture

Collaboration & Capture

System model Multi-physics model Wiki

Set up Architecture
topology

Deconfliction

Discovery

Design & Constraint
Capture

Time

Fi
d

el
it

y

Iterative

https://opencae.jpl.nasa.gov/portal/#/

Architecture and Design

Architecture & Design

Behavioral
Specifications

(Generative) Architecture
exploration

Variants &
Configurations

System level & multi-physics
Co-simulation

● Articulation of
Design Space

● Determine
required
connectivity
constraints

Iterative

Pr
oj

ec
t

fu
nc

ti
on

al
 in

to

p
hy

si
ca

l a
rc

hi
te

ct
ur

es

https://opencae.jpl.nasa.gov/portal/#/

Quantitative Analysis

Quantitative Analysis● Baseline Analysis
● Adding new Components
● Swapping Components

Guided Architecture Selection in an
integrated engineering environment

https://github.com/Open-MBEE/perseverance-modelica

System -
Multi-physics
Co-simulation

Constraint
evaluation

FSW
simulation

Multi-attribute comparison
& constraint evaluation

Visualizations
(e.g. telemetry)

Behavioral Analysis

Functional &
physical trade

https://opencae.jpl.nasa.gov/portal/#/
https://github.com/Open-MBEE/perseverance-modelica
https://github.com/Open-MBEE/perseverance-modelica

Telemetry Visualization

https://opencae.jpl.nasa.gov/portal/#/

Sophisticated Simulations

https://opencae.jpl.nasa.gov/portal/#/

Varying the physical architecture with Jupyter

For example
Trade science
return

by exploring
● Power

topologies
● Sensing

options
● Mass

allocations
and
Evaluate against
constraints

https://opencae.jpl.nasa.gov/portal/#/

Publication

Products

Documents

Publication

Engineering documents aggregate design
specification, definition, and analysis
results

https://opencae.jpl.nasa.gov/portal/#/

Autonomy Trades Prototype with “Darty”
● Prototype demonstrating the process with

a DART like mission - crash into a small
body

● Explore trade space to determine if
autonomy is needed and which
architectures require it

Steps:

● Articulate architecture space with
different types of thrusters

● Generate architecture structures as
SysML models

● Elaborate required control system
behavior with a goal-based architecture in
an executable SysML model

● Capture multi-physics model of
spacecraft in Modelica

● Co-simulate System level behavior and
multi-physics with different scenarios

● Determine when trajectory correction
maneuvers require autonomy

Simulation Results -
State Machines

Controller is always consuming
new measurements as they
arrive from the the estimator

Control is applied upon receipt
of the start_controlling signal

Thruster is active when
controller is in the Controlling
state and provides
command_thruster signal

Simulation Results -
Value properties

Initially, controller is in Idle state so no
desired value is calculated. Desired value is
calculated when controller is in Controlling
state. Desired value remains unchanged
after controller returns to Idle.

Estimated value responds to changes
induced by the thruster when in Thrusting
state.

Error grows as controller
remains in Idle state

Correction delta is applied by thruster when
system is in the Controlling and Thrusting
states

Measured value responds to changes
induced by the thruster [low fidelity sim
produces oscillations around desired value]

Topic: Enabling Technology
We are almost there

Linked Data Documents with OpenMBEE

● OpenMBEE is a community
for open source modeling
software and models

○ Open source software activities
○ Open source models
○ Open source exchange of ideas

● Participants and adopters:
JPL, Boeing, Lockheed Martin, OMG,
NavAir, Ford, Stevens, Georgia Tech, ESO,
...

● > 500 members

Open Model-Based Engineering Environment

Ecosystem Vision

Global Engineering Ecosystem

● Augment Jupyter’s multi-language
analysis capabilities with modeling and
connected engineering

● Enable novel data-driven analyses with
advanced capabilities, as a service

● Unlock value through commoditization
● Standards powered engineering platform

using SysML v2 + API & Services

J

Jupyter as Analysis and Visualization hub for
Models

Interactive, exploratory, browser-based
computing environment for:

● engineering
● data science
● scientific computing
● ML/AI
● and so much more...

● New metamodel that is not
constrained by UML

○ Grounded in formal semantics

● Robust visualizations based
on flexible view & viewpoint
specification and execution

○ Equivalent textual and graphical

● Standardized API to access
the model

SysML v2 Key Elements

Functional Mock Up Interface

● Supported by more than 100+ tools
(https://fmi-standard.org/)

● Custom IP protection
● Cost-effective deployment
● Compiled models
● Parameters can be changed
● Structure cannot be changed

https://fmi-standard.org/

● Package and dependency
management for models

● Enable sharing distribution of
models as self-contained
packages

● Model re-use

Conda enables packaging of and CM

The Next Generation Systems Engineer’s Dream Car

● SE paradigm shift to formal languages and automation, i.e. MBSE
● Systematic qualification and audit trail
● Close gap between engineering documents and models
● Break up the engineering silos with digital twin pipelines
● Standards based and commoditized

Conclusions

Questions?

https://opencae.jpl.nasa.gov/portal/#/

Backup

